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The Focusing Properties of the Positron-Capture Solenoidal Lens 

This note concerns the focusing properties of the positron-capture solenoid. 

Such a solenoid will be placed before the entrance of the 450 MeV positron 

linear-accelerator injector in the APS. 

The 1.25 A, 40 ns electron beam is accelerated in the 200 MeV electron linac. 

This beam is then focused onto a 3 rom diameter spot at the 7 rom thick (i. e., two 

radiation length) tungsten target. By the process of multiple nuclear-scattering 

the target generates the positron particles. These positrons, in general, can have 

a large diverging angle. The empirical formula for an angular dependence of the 

positron yield can be written as: 

(-0) 
N(O) = N(O = O)e 00 

where 00 ~ 0.35 rad (i.e., ~ 20 degrees). Here N(O = 0) is the forward yield. 

(1) 

In order to capture these rapidly diverging positrons, a relatively strong fo-

cusing lens is placed close to the converter. In this case a magnetic solenoidal 

lens has an advantage over the usual quadrupole lens because of its larger phase-

space acceptance. In particular, the solenoidal lens is noted for its capability of 

controlling the spin direction of polarized ions. This type of lens, however, has 

the disadvantage that for a given focal length it requires much more power than 

the quadrupole lens. When a solenoid requires high power, it is imperative to 

pulse it in order to reduce the time-averaged power. 
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In investigating the particle motion through the solenoidal lens, one usually 

assumes a uniform field distribution inside the solenoid. The radial components 

of the field are assumed to exist only at the entrance and at the exit of the lens. 

This approximation holds well when one treats the paraxial ray only. However, 

this is not the case for the positron-capture solenoid described here (i.e., positrons 

have large diverging angle). Therefore, one should study the focusing properties 

of the solenoid arising from the nonlinearity of the magnetic field. 

We shall first write down the expression for the magnetic field distribution on 

the axis for the solenoidal lens. From this expression we derive the expressions 

for the first- and second-order field distributions at any point in the region. We 

then calculate and compare the focal powers at various distances off the axis. 

Further, we calculate and include the third- and fourth-order components of the 

fields and compare them with the previous results. Finally, we briefly consider 

the particle trajectories through these fields and present the result in terms of 

the particle motion in phase space. 

1. Magnetic field distribution of a double-layer solenoid 

The magnetic fields of a single-layer solenoidal lens can be easily calculated by 

assuming that the solenoid is a series of closely packed circular current loops. This 

assumption remains valid as long as the pitch of the solenoid is small compared 

with the total length of the solenoid. Then the vector potential at any point in 

the region can be expressed by the following equation: 

ILoI a 1/2 k2 

A4' = -( -) [(1 - -)K(k) - E(k)] 
1fk p 2 

(2) 
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where 

In the above equation for Aq" J.Lo is the permeability in free space, I is the total 

current in ampere-turns, a is the radius in meters, and K and E are the complete 

elliptic integrals of the first- and the second-kind, respectively. The magnetic 

fields then can be determined from ii = V x A: 

1 a 
Bz = --(pAq,) 

pap 

Carrying out the differentiations, we finally get 

I 222 
B - J.Lo Z [-K(k) + a + p + Z E(k)] 

p - 211" plea + p)2 + z2jl/2 (a - p)2 + z2 

I 1 2 2 2 
B - J.Lo [K(k) + a - p - Z E(k)] 

z - 211" [(a + p)2 + z2jl/2 (a - p)2 + z2 

(3) 

(4) 

The calculation of the field for a double-layer solenoid involves complicated in-

tegrations and differentiations of the elliptic integrals. However, one can obtain 

an accurate field distribution by using a field property for a rotationally sym-

metrical geometry. That is, the field in the region of interest can be evaluated if 

one knows the field distribution on the axis. The field off the axis can then be 

obtained from the Taylor expansion of the field on the axis: 

(5) 

For a double-layer solenoid, the calculation of the field along the axis is straight-
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forward, and the result is given by 

(6) 

where a and b are the inner and the outer radii in meters, L is the total length in 

meters, and N is the total number of windings on both layers (i.e., N = Nl + N2) . 

of the solenoid. From this expression, one can obtain the first- and second-

derivatives, etc. The results are: 

(7) 

and 

(8) 
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where 

~ J1.oIN 
(; II = ----:------:--

2(b - alL 

A+ = a + Jr-a2-+-( z-+-L-/-2)-2 

Ct+ = Va2 + (z + L/2)2 

B+ = b + Vb2 + (z + L/2)2 

fh = Vb2 + (z + L/2)2 

A_ = a+ Va2 + (z - L/2)2 

Ct_ = Va2 + (z - L/2)2 

B_ = b+ Vb2 + (z - L/2)2 

f3- = Vb2 + (z - L/2)2 

(9) 

One can go on further to obtain higher-order terms, but the number of terms 

increases rapidly and subsequently the calculation becomes more and more com-

plicated. At this point, therefore, it is expedient to resort to the numerical 

method to calculate higher-order terms. This can be done by using the numeri-

cal derivatives by polynomial interpolation. A computer program was written to 

calculate the general field distribution of a double-layer solenoidal lens up to any 

given order in the field expansion. The result obtained by this numerical method 

was compared with the above analytical expression up to the second order and 

was found to be the same. From here on, when we say the higher-order magnetic 

field, it will mean that the magnetic field expansion includes the terms up to the 

fourth order. 
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2. Motion of the positrons through the solenoidal lens 

Some parameters for the APS positron-capture solenoidal lens are listed in 

the following: 

L = 4.6 em, a = 1.25 em, b = 2.25 em, N = 16 turns, I ~ 5000 A 

These parameters are based on the DESY design. We assume that the solenoid 

is placed at 5 mm distance from the target. With these parameters, we show 

in Fig. 1 the variations of Bz on the axis and off the axis. The off-axis field 

distribution was obtained from the fourth-order expansion of the field on the 

axis (i.e., Eq. (6)). Fig. 1 indicates that the nonlinear effect is not as significant 

as we conjectured in the first place. More explicit comparison between the linear 

and the nonlinear effect can be made by considering the focusing power of the 

lens at various radii. 

The focusing power of the solenoid can be easily derived from the radial 

equation of motion in cylindrical coordinates (p, 4>, z) . It is given by: 

(10) 

where Mo is the rest mass of the particle, 'Y is the usual relativistic factor, and 

4> is the azimuthal angle. By using the Busch's theorem assuming the initial flux 

linked on the trajectory is zero (i.e., ~o = 0), 

d4> e e Bz 
dt = 21r'Yp2 (4) - 4>0) = Mo'Y 2 (11) 

and changing the independent variable from t to z, which is the distance along 

the axis of the lens, and integrating the equation with respect to z, one can finally 
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arrive at the expression for the focusing power of the axial magnetic lens: 

(12) 

where /3 = v / c and c is the speed of light. In the case of the APS positrons 

generated by the target, the central energy is assumed to be 8 MeV. This 

corresponds to ,,/=16.6556, /3=0.998196. With these values, Fig. 2 summarizes 

the focusing power at different radii. 

By using the fields obtained above, one can trace a number of positrons from 

the positron target to the further downstream. In the following, we present some 

preliminary results. 

The radial and angular, as well as the energy, distribution of the positrons 

generated by the converter can be obtained by the Monte-Carlo calculation of the 
c 

electromagnetic shower. However, since we are not concerned with the detailed 

distribution of the positrons (i.e., beam brightness), we assume that the particles 

are distributed uniformly in radius and angle. This assumption is permissible if 

one is interested in obtaining the acceptance of the lens. The energy spread is 

not included in our preliminary calculation, which will be taken into account 

later in a more detailed paper. Further, the space-charge effect was not taken 

into account in the calculation since the positrons are already relativistic (i.e., 

space-charge force decreases as 1/,,/2). 

The positron-capture solenoid acts like a quarter-wave transformer. By this 

we mean that the role of the solenoid merely rotates the initial phase-space dia-

gram by 90 degrees. That is, large angular divergence and small radial spread of 
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the initial positrons are transformed into small divergence and large radial spread 

of the final positrons. That this really holds in our case is demonstrated in Fig. 3 

(a) and (b). In Fig. 3, (a) depicts the transverse phase-space diagram at the po

sition of the target, and (b) describes the transverse phase-space diagram further 

downstream after the solenoid (i.e., z= 10 em) where the field of the solenoidal 

lens is almost zero. In this figure, we take about SO uniformly distributed ex

treme particles at the position of the target. The chosen initial conditions are 

such that x ~ ±1.5 mm, x, ~ ±21O mrad. From the figure, one can clearly see 

the focusing property of the solenoid so that the initial large divergence (1.5 mm 

x 210 mrad) is converted to (7.5 mm x 42 mrad). The slight filamentation (i.e., 

distortion) of the phase-space comes from the nonlinear magnetic field that we 

discussed before. This phenomenon is well known and would not appear in the 

first-order theory. 

A further study indicates that the acceptance of the solenoid is about ~60 mm 

mrad in both transverse planes when the current is optimized to 5000 amperes 

per turn (i.e. Bo=1.S1 T at the center). The overall acceptance of the positron 

transport system, however, is reduced when we take into account the first two 

sections of the linear accelerator where long solenoids are placed around the 

accelerating waveguides. The description of the results of t.his study is the subject 

of the next note. 
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The magnetic field of a double-layer solenoid[l] was derived. The axial field was 
given by 

where 

~ - -+ l/'> "'+ - '" ~, 

z_ = z - l/2 , 

b+ = b + Jb2 + (z + l/2)2 , 

b_ = b + Jb2 + (z - 1/2)2 , 

(l+ = a + Ja2 + (z + 1/2)2 , 

(L = a + Ja2 + (z - l/2)2 , 

J..-~ 
. - 2{b-a}1 . 

(1) 

Here, a and b are the inner and the outer radii, I is the length of the solenoid, and 
N is the total number of turns on both layers (N=Nl + N2 ). 

A new derivation found a sign error in the previous calculations. The correct expres
sion of the field is given by 

(2) 

The field off the axis can be obtained from the Taylor expansion of the field on the axis. 

B ( .,. ) = B (0 .,.) _ p2(cPBAO,z)) p4(04B z (0,Z))_ 
z p, - z, - 4 OZ2 + 64 OZ4 •.• , 

(4) 

The effects of the higher order terms on the on-axis solenoidal field were studied 
llumerically. The results are summarized in Figure 1. The plots show both the 011-

axis and off-axis axial field vs. distance, z. It is clear that the nonlinear effect is 
not significant. A field of B = 1.8 T ca.n be acheivecl at the center of the lens. The 
corresponding parameters for the APS positron-ca.pture solenoid are listed below: 
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1= 4.6 em , 

a = 1.25 em , 

b = 2.2.5 em , 

N = 16 t'lll'11..5 , 

1= 5000 A . 

The solenoidal lens acts as a quarter-\vave transformer which rotates the initial phase
space of the positron bunch distribution by 90 degrees. Figure 2 shows the transverse 
phase-space diagrams (a) at the position of the target and (b) downstream after the 
solenoid (z=lO cm) where the magnetic field is almost zero. 
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